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Abstract

General-purpose GPU applications that use fine-grained synchronization to enforce or-

dering between many threads accessing shared data have become increasingly popular. Thus,

it is imperative to create more efficient GPU synchronization primitives for these applica-

tions. Accordingly, in recent years there has been a push to establish a single, unified set

of GPU synchronization primitives. However, unlike CPUs, modern GPUs poorly support

synchronization primitives. In particular, inefficient support for atomics, which are used

to implement fine-grained synchronization, make it challenging to implement efficient algo-

rithms. Therefore, as GPU algorithms are scaled to millions or billions of threads, existing

GPU synchronization primitives either scale poorly or suffer from livelock or deadlock issues

because of increased contention between threads accessing the same shared synchronization

objects. In this work, we seek to overcome these inefficiencies by designing more efficient,

scalable GPU global barriers and semaphores. In particular, we show how multi-level sense

reversing barriers and priority mechanisms for semaphores can be extended from prior CPU

implementations and applied to the GPUs unique processing model in order to improve per-

formance and scalability of GPU synchronization primitives. Our results show that proposed

designs significantly improve performance compared to state-of-the-art solutions like CUDA

Cooperative Groups, and scale to an order of magnitude more threads – avoiding livelock as

the algorithms scale compared to prior open source algorithms. Overall, across three mod-

ern GPUs: the proposed barrier implementation reduces atomic traffic by 50% and improves

performance by an average of 26% over a GPU tree barrier algorithm and improves perfor-

mance by an average of 30% over CUDA Cooperative Groups for four full-sized benchmarks;

the new semaphore implementation improves performance by an average of 65% compared

to prior GPU semaphore implementations.
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Chapter One

INTRODUCTION

Traditionally, GPUs focused on providing high performance for streaming, data parallel

workloads with limited data reuse or data sharing and coarse-grained synchronization that

usually only happened at kernel boundaries. In recent years, applications with different

characteristics have also started taking advantage of the parallelism exposed by the GPUs.

For example, recent work has shown how to use GPUs for persistent kernels [11, 25, 73],

buddy allocation [15], and particle partitioning [10] while other work shows how GPUs use

fusing kernels [1, 17, 34] and concurrent streams [38, 36]. Unlike traditional, streaming, data

parallel general-purpose GPU (GPGPU) applications, these applications utilize fine-grained

synchronization across many threads. Hence, they make use of synchronization primitives

such as locks, semaphores, and barriers [41, 57, 61]. Traditionally, developers have relied

on complex GPU solutions [18] or utilized CPU-side solutions [64] for providing device-wide

synchronization.

Unfortunately, fine-grained synchronization like barriers and semaphores is not well sup-

ported on modern GPUs. Unlike multi-core CPUs, which have significant OS support and

complex coherence protocols like MOESI that make synchronization relatively cheap, GPUs

have limited OS support and use simple, software-driven coherence protocols. To enforce

consistency, the GPU coherence protocols invalidate all valid data in local caches (e.g., L1)

at the beginning of a synchronization pair (e.g., a load acquire) and write through all dirty
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data from local caches at the end of a synchronization pair (e.g., a store release) [5, 3, 20,

26, 55, 56, 58]. Thus, GPU synchronization accesses, which are usually implemented with

atomics, are expensive on GPUs. To partially compensate for this, GPU memory consis-

tency models utilize scoped synchronization, which allows programmers to specify the level

at which threads need to synchronize [14, 22, 23, 29, 30]. With scopes, if the synchronizing

threads are part of the same thread block (TB), then the synchronization occurs locally with

minimal overhead. However, if the synchronizing threads are not part of the same TB, which

is usually the case for these next-generation workloads, expensive global synchronization is

still required. We discuss the GPU coherence and consistency support further in Section 2.

In recent years, companies have started adding better hardware support for atomics [42,

40], such that compared to NVIDIA’s Kepler and Maxwell GPUs, atomics are an order of

magnitude faster on Pascal and Volta GPUs. However, this support only accelerates the

atomic operations themselves, not the corresponding heavyweight operations to invalidate

valid data in the cache or write through dirty data. Moreover, it does not address the

issue that globally scoped atomic operations must still take place at the last level cache.

Consequently, fine-grained synchronization is still extremely expensive, and often represents

the bottleneck for emerging workloads that utilize it. In addition, synchronization overheads

are exacerbated by the level of parallelism on GPUs: GPUs typically run kernels with millions

or billions of threads, which leads to significant contention for the synchronization variables.

Recently NVIDIA proposed a hierarchy of synchronization methods based on CUDA

Cooperative Groups (CCG) [41] that span across all levels of granularity from a small group of

threads in a GPU to a multi-GPU device. This approach offers tight integration with CUDA

and performs well, especially at low contention levels, but as we show in Section 5, suffers

from high contention for shared synchronization variables as the number of threads joining

the barrier increase. Researchers have also developed device-wide software barriers [71] which

implement GPU lock-based synchronization using mutex variables and global counters with

atomic operations and lock-free synchronization. Other work developed portable barriers,
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which dynamically compute an estimate of the SM occupancy for a given kernel, allowing

for a starvation-free inter-block barrier by restricting the number of blocks according to this

estimate [60]. However, both of these approaches limit the number of TBs that can be

launched on an SM to avoid deadlock. Another popular open source device-wide barrier

is HeteroSync’s tree barrier [63], which uses two consecutive barriers to properly support

for context switching. However, this approach significantly increases global atomic traffic to

update the shared counter variables [57]. We propose to overcome these issues by introducing

a two-level sense-reversing tree barrier for GPUs. Although tree barriers and sense reversing

barriers have been widely used for CPUs [21, 63], extending them to work well on GPUs is

novel. We discuss related work further in Section 6.

Semaphores allow multiple TBs to enter the critical section simultaneously, potentially

improving performance. However, current reader-writer GPU semaphore implementations

suffer from significant scalability bottlenecks as the number of threads increase. This problem

is exacerbated when a writer attempts to exit the semaphore and multiple reader TBs at-

tempt to enter it simultaneously, leading to frequent deadlocks under high contention. Thus,

we propose a priority mechanism for the semaphore to give TBs exiting the semaphore

priority.

Overall, this paper makes the following contributions:

1. We propose a two-level, sense reversing barrier for GPUs that reduces the number of

atomic transactions required for synchronization by 50% compared to the baseline tree

barrier.

2. We propose a priority mechanism to reduce the contention for GPU semaphores, which

reduces the time spent on synchronization and eliminates deadlock compared to the

baseline thereby improving scalability.

3. We quantitatively evaluate the proposed schemes against state-of-the-art GPU syn-

chronization primitives. Compared to HeteroSync’s tree barrier and semaphore, on

3



average our barrier improves performance by 14% on Pascal, 24% on Volta, and 41%

on Turing GPUs; our semaphore improves performance by 35% for Pascal, 89% for

Volta, and 70% for Turing GPUs, respectively. Moreover, compared to CUDA’s CCG,

on average our barrier algorithm scales significantly better, improving performance by

28% on Pascal, 41% on Volta, and 20% on Turing at the maximum contention level

for four larger benchmarks that utilize global barriers.

4



Chapter Two

BACKGROUND

In this section, we first discuss GPU coherence and consistency models and how they impact

programs with fine-grained synchronization (Section 2.1). We then discuss synchronization

primitives used for CPUs and why they are inefficient on GPUs, and finally discuss about

current state-of-the-art GPU implementation of synchronization primitives (Section 2.2).

2.1 GPU Coherence & Consistency

Traditional GPU applications were highly parallel and had coarse-grained synchronization,

which enabled GPUs to use a simple, software-driven coherence protocol [3, 20, 26, 56,

55, 58]. The coherence protocol invalidates the cache on acquires (synchronization reads)

while releases (synchronization writes) must flush the local store buffer and bypass the L1

cache and be performed at a memory that is shared by all the SMs (usually the L2). Thus,

GPUs perform global synchronization at the shared L2. However, emerging applications

require fine-grained synchronization which makes use of atomics [1, 10, 11, 15, 17, 25, 27,

34, 50, 51] and performing an acquire for synchronization will invalidate the entire cache

while a release waits until all previous writes have reached the shared L2. This makes fine-

grained synchronizations extremely costly from a performance perspective. To overcome this

performance loss, programmers use scope-based synchronizations [14, 22, 23, 29, 30].
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Both AMD and NVIDIA’s memory consistency models extend the sequentially consistent

for data-race-free (SC-for-DRF) memory consistency model that is widely used in CPUs [8,

31] with scoped synchronization [14, 22, 23, 29, 30]. Thus, it is referred to as the sequentially

consistent for heterogeneous-race-free (SC-for-HRF) memory consistency model. Although

there are multiple scopes in SC-for-HRF, we will focus on the two most widely used variants:

local and global. An atomic with a local scope is only guaranteed to be visible to other

threads in the same TB, while an atomic with global scope is visible to all threads across the

GPU. Therefore locally scoped synchronization (e.g., CUDA’s __threadfence_block()) is

significantly cheaper than globally scoped synchronization. Thus, programmers have an in-

centive to synchronize locally wherever possible. However, when synchronization is required

across TBs, global scope (e.g., CUDA’s __threadfence()) must be used.

2.2 GPU Synchronization Primitives

In recent years, several projects sought to develop a common set of GPU synchronization

primitives. In this work, we compare against the state-of-the-art open source solution, Het-

eroSync, and the state-of-the-art solution provided by NVIDIA, CCG. We discuss additional

related work further in Section 6.

Synchronization Primitives (SyncPrims) originally released a set of mutexes, barriers, and

semaphores focused on GPU atomic performance [61]. HeteroSync extended SyncPrims to

model memory accesses that required fine-grained synchronization1, optimize the algorithms,

and added both local and globally scoped versions of most algorithms [57]. NVIDIA also

introduced the CCGs [41], which allows kernels to dynamically organize groups of threads

that span across all levels of granularity from a small group of threads in a GPU to a multi-

GPU device. These primitives allow for new patterns of cooperative parallelism within
1SyncPrims’ memory accesses in the critical sections used local scratchpads, and thus did not require any

fine-grained synchronization to ensure ordering.
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Figure 2.1 Baseline Two–Level Tree Barrier [57] with statically elected per-SM
leader TB which joins the global barrier.

CUDA, including producer-consumer parallelism and global synchronization. Thus, we next

describe HeteroSync’s barrier and semaphore and CCG’s barrier implementations.

2.2.1 Barriers

Figure 2.1 shows an illustration of HeteroSync’s current two-level centralized tree barrier,

which uses a hybrid local-global scope. In a centralized barrier, TBs increment a shared

counter as they reach the barrier and spin until the counter indicates that all TBs are

present. As compared to decentralized barriers, centralized barriers consume significantly

lesser memory because of shared counters. In this implementation, all TBs on a Streaming

Multiprocessor (SM) [6, 40] access unique data before joining a local barrier. In each TB,

a single master thread performs the synchronization. Once all TBs have reached the local

barrier, one designated leader TB from each SM joins the global barrier. As shown in

Listing 2.1, all other TBs on a SM spin on a local variable until all TBs on this SM join the

local barrier. Then, a statically assigned leader TB proceeds to join the global barrier as

7



1 __shared__ ∗done = 0 ;

2 // l o c a l scope s t o r e r e l e a s e

3 __threadfence_block ( ) ;

4 atomicInc ( perSMBarr , 0x7FFFFFFF) ;

5 whi l e ( ! ∗ done ) {

6 i f ( atomicCAS(perSMBarr , numTBs_thisSM , 0) == 0) {

7 // l o c a l scope load acqu i r e

8 __threadfence_block ( ) ;

9 ∗done = 1 ;

10 }

11 __syncthreads ( ) ;

12 }

Listing 2.1 Pseudo-code for baseline GPU per SM local barrier [57].

shown in Listing 2.2 while all other TBs proceed to join a second local barrier as illustrated

in Listing 2.3. Crucially, in order to ensure correctness during potential context switches [2,

45, 65, 68, 67, 69, 72], HeteroSync’s tree barrier uses a second barrier, which creates an effect

similar to a sense-reversing barrier Instead of using the same value to represent the “done”

and “not-done” states, barriers use opposite values [57]. Once the expected number of leader

TBs reach the global barrier, these leader TBs proceed to join the second local barrier on

the SM where other TBs from the same SM are spinning. However, this approach requires

a significant number of additional atomics, which adversely impacts performance. Using a

tree barrier partially mitigates this overhead by making many of the atomics locally scoped;

nonetheless, it is not able to completely mitigate the overhead.

Although CCG is closed source, and thus not all of its implementation details are known,

we disassembled and studied the SASS for a Volta grid_group.sync() (barrier) [39, 66].

Based on the SASS, CCG appears to use multiple different barrier implementations. Al-
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1 __shared__ ∗ done = 0 ;

2 // g l oba l scope s t o r e r e l e a s e

3 __threadfence ( ) ;

4 // adds 1 f o r each TB that j o i n s g l oba l b a r r i e r

5 atomicInc ( g loba lBarr , 0x7FFFFFFF) ;

6 whi l e ( ! ∗ done ) {

7 i f ( atomicCAS( g lobalBarr , numBarr , 0) == 0) {

8 // g l oba l scope load acqu i r e

9 __threadfence ( ) ;

10 ∗done = 1 ;

11 }

12 __syncthreads ( ) ;

13 i f ( ! ∗ done ) { DoBackoff ( ) ; }

14 }

Listing 2.2 Pseudo-code for baseline GPU global barrier [57].

though we could not determine when each barrier was dynamically selected, all of them use

a single-level global memory barrier. The pseudo-code in Listing 2.4 shows the barrier that

was selected for our configurations (Section 4). CCG utilizes an aggressive, single-level global

memory barrier, similar to open source barrier implementations [60, 61]. Like HeteroSync,

each TB elects a leader thread, and the remaining threads in the TB spin (__syncthreads())

waiting for the barrier to complete. Furthermore, CCG adds a sense direction counter that

exploits integer overflow. Interestingly, CCG does not appear to perform any backoff, likely

because it may increase latency when leaving the barrier. However, as we will show in Sec-

tion 5, a single level barrier without backoff can also result in added contention, especially

when many TBs join the barrier.
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1 unsigned i n t ∗ atom1 = perSMBarrBuffers [ i ] ;

2 unsigned i n t ∗ atom2 = perSMBarrBuffers [ i +1] ;

3 __shared__ in t done1 , done2 ;

4

5 cudaBarrierAtomic ( atom1 , &done1 , numTBsThisSM) ;

6 // to avoid deadlock on context sw i t che s

7 cudaBarrierAtomic ( atom2 , &done2 , numTBsThisSM) ;

Listing 2.3 Pseudo-code for baseline two-level tree barrier implementation [57].
The second call to the barrier is to create an effect similar to sense-reversing
barrier.

2.2.2 Semaphores

Figure 2.2 provides a high-level overview of HeteroSync’s reader-writer semaphore implemen-

tation. In this semaphore implementation, each SM has one writer TB that tries to write

all the data, and N − 1 reader TBs that try to read a subset of the data. When a TB tries

to enter the critical section (the post sub-routine) as shown in Listing 2.5, it first acquires a

mutex lock and checks to see if there is enough capacity in the semaphore for the TB. If there

is capacity, then the TB updates the semaphore and releases the lock. Similarly, when a TB

is leaving the critical section (the wait sub-routine), as shown in Listing 2.6, it acquires the

mutex lock and updates the semaphore to remove itself from the semaphore before releasing

the lock. When the size of the semaphore is greater than one, multiple reader TBs can enter

the critical section simultaneously. Unlike on CPUs, which benefit from better OS support,

both the post and wait sub-routines must utilize a lock to ensure ordering for accesses to the

semaphore count (semSize) as shown in Listing 2.5. Thus, as the number of TBs increases,

the mutex lock causes increased contention for reader and writer TBs trying to enter and exit

the semaphore simultaneously. This occurs because a TB leaving the semaphore cannot exit

since it cannot access the mutex variable, which other TBs trying to enter the semaphore

10



1 // g l oba l_bar r i e r count i n i t i a l i z e d to 0

2 i f ( threadIdx == (0 , 0 , 0 ) ) {

3 i n t d i r e c t i on , value_to_add ;

4 i f ( b lockIdx == (0 , 0 , 0 ) ) {

5 valueToAdd = INT_MAX − to ta l_b locks + 2 ;

6 } e l s e { valueToAdd = 1 ; }

7 // 0 : wait f o r negat ive , 1 : wait f o r p o s i t i v e

8 d i r e c t i o n = ( g l oba l_bar r i e r >= 0) ? 0 : 1 ;

9 __threadfence ( ) ;

10 atomicAdd(&g loba l_bar r i e r , valueToAdd ) ;

11 i f ( d i r e c t i o n == 0) {

12 whi l e ( g l oba l_bar r i e r >= 0) { ; }

13 } e l s e {

14 whi l e ( g l oba l_bar r i e r < 0) { ; }

15 }

16 __threadfence ( ) ;

17 }

18 __syncthreads ( ) ; // other threads wait here

Listing 2.4 Pseudo-code for disassembled Volta CCG barrier [41].

Figure 2.2 Baseline Semaphore Implementation [57].

keep accessing. One way to optimize the performance of these algorithms is to add backoff

and make the TBs wait for a short period of time between each unsuccessful acquire.
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1 whi l e ( ! acqLock ) {

2 // try to acqu i r e the sem lock

3 i f ( atomicCAS( lock , 0 , 1) == 0) {

4 // g l oba l scope load acqu i r e

5 __threadfence ( ) ;

6 acqLock = true ;

7 i f ( i sWr i t e r ) {

8 semSize −= maxSemCount ;

9 } e l s e {

10 −−semSize ;

11 } }

12 __syncthreads ( ) ;

13 }

14 // g l oba l scope load acqu i r e

15 __threadfence ( ) ;

16 atomicExch ( lock , 0) ;

Listing 2.5 Pseudo-code for the post routine of the baseline GPU semaphore [57].
Post enters the semaphore.
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1 whi l e ( ! acqLock ) {

2 i f ( atomicCAS( lock , 0 , 1) == 0) {

3 __threadfence ( ) ;

4 acqLock = true ;

5 // wr i t e r s add the max value to the semaphore

6 i f ( i sWr i t e r ) { semSize += maxSemCount ; }

7 // r eade r s add 1 to the semaphore

8 e l s e { ++semSize ; }

9 } }

10 // g l oba l scope s t o r e r e l e a s e

11 __threadfence ( ) ;

12 atomicExch ( lock , 0) ;

Listing 2.6 Pseudo-code for the wait routine of the baseline GPU semaphore [57].
Wait exits the semaphore.
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Chapter Three

Design

3.1 Sense Reversing Barriers

As discussed in Section 2.2.1, HeteroSync’s atomic tree barrier requires every TB to incre-

ment the global counter twice to avoid potential deadlock on a context switch. Current

GPUs applications rarely switch contexts, although prior work has shown that it does hap-

pen, especially when higher priority tasks with hard real-time deadlines, such as graphics

tasks arrive [45, 65, 68, 67, 69, 72]. Thus it is necessary to ensure correctness, similar to

CCG’s direction counter. The second barrier, which is necessary for correctness, causes

significant overhead, even when a tree barrier is used to convert most of the atomics to locally

scoped atomics. Thus, to overcome this issue, we propose to extend sense reversing barriers

(SRBs) [21] from CPUs. Figure 3.1 shows a high-level overview of the proposed GPU SRB

design.

Like the atomic tree barrier used in HeteroSync, our SRB utilizes a tree barrier to re-

duce contention. Further, we dynamically designate a leader TB to go and join the global

barrier unlike previously where a statically elected leader TB was required to join the global

barrier. We choose two levels for our tree barrier because this naturally conforms to the

memory hierarchy and scoped synchronization of modern GPUs – locally scoped atomics

can be performed in L1 caches co-located with each SM, while globally scoped atomics can
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Figure 3.1 High-level overview of GPU Sense Reversing Barrier design with dy-
namically elected per-SM leader joining the global barrier. This leader TB also flips
the sense.

be performed in L2 cache, which is shared across all SMs. Similar to the tree barrier in

Listing 2.3, the SRB has two parts: a local barrier per SM (Listing 3.1) and a global barrier

across all SMs (Listing 3.2).

Local Barrier: All TBs on a SM share a sense variable (sense), which is initialized to

a constant value. As shown in Listing 3.1, TBs spin until their respective sense variable

matches sense. As in CPU sense reversing barriers, sense matches when all TBs on a SM

join the local barrier. Next, we dynamically designate a leader TB to proceed to the global

barrier. To avoid overhead when a statically selected leader is not the last TB to join the

local barrier (and thus may not be active), we dynamically make the last TB joining the

local barrier the leader TB that joins to the global barrier.

Global Barrier: Next, all dynamic leaders increment a global counter for the global barrier

across TBs. When this count reaches the total number of active SMs, all leader TBs have

reached the global barrier and the global sense is flipped (Listing 3.2). Meanwhile, all other
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1 whi l e (∗ s ense != s ) {

2 i f ( atomicCAS(perSMBarr , numTBsThisSM , 0) == numTBsThisSM){

3 __threadfence ( ) ;

4 ∗ s ense = s ; // f l i p sense

5 ∗ l a s t_block = blockIdx . x ; // dynamic l e ade r

6 }

7 __syncthreads ( ) ;

8 }

Listing 3.1 Pseudo-code for local (per SM) phase of proposed GPU sense-
reversing tree barrier.

Figure 3.2 High-level overview of proposed priority semaphore.

TBs per SM except the leader spin, waiting for the global barrier to complete, as shown in

Figure 3.1. Overall, this implementation retains the benefits of HeteroSync’s tree barrier by

keeping most thread’s atomics local, while removing the second local barrier and dynamically

designating a TB from the SM to join the global barrier.
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1 whi l e (∗ g loba l_sense != ∗ s ense ) {

2 // update g l oba l counter

3 i f ( atomicCAS( g lobalBarr , numBarr , 0) == numBarr ) {

4 // g l oba l scope load acqu i r e

5 __threadfence ( ) ;

6 ∗ g loba l_sense = ∗ s ense ; // f l i p sense

7 } e l s e { DoBackoff ( ) ; }

8 __syncthreads ( ) ;

9 }

Listing 3.2 Pseudo-code for global phase of proposed GPU sense-reversing tree
barrier.

3.2 Semaphores

Semaphores allow multiple TBs to enter the critical section simultaneously based on the

semaphore size. Typically, semaphores either require that the data accessed by each thread

is unique, to avoid data races, or only allow readers to be in the semaphore simultaneously.

As discussed in Section 2.2.2, due to the lack of OS and hardware support in modern GPUs,

current semaphore implementations use mutex locks when updating the semaphore to ensure

that multiple threads do not update the semaphore count simultaneously. However, this

centralized mutex quickly becomes highly contented given the larger number of threads in

GPU programs.

Moreover, this centralized mutex lock also creates a bottleneck for threads attempting

to exit the semaphore, since they need to contend with threads trying to acquire the lock to

enter the semaphore. We demonstrate that this leads to deadlock for most modern GPUs

when the number of TBs/SM are scaled beyond 1 or 2 TBs/SM (Section 5.2). Even software

back-off does not solve this deadlock, because it does not guarantee that threads trying to

exit the semaphore can obtain the lock in a timely fashion. Thus, we propose to add a
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1 acqLock = f a l s e ;

2 whi l e ( ! acqLock ) {

3 // i f any threads e x i t i n g semaphore , wait

4 whi l e ( atomicCAS( p r i o r i t y , 0 , 0) != 0) {

5 DoBackoff ( ) ;

6 }

7 i f ( atomicCAS( lock , 0 , 1) == 0) {

8 // g l oba l scope load acqu i r e

9 __threadfence ( ) ;

10 acqLock = true ;

11 i f ( i sWr i t e r ) { semSize −= maxSemCount ; }

12 e l s e { −−semSize ; }

13 }

14 }

Listing 3.3 Pseudo-code for the core post routine of the proposed GPU priority
semaphore. Post enters the semaphore.

priority mechanism to prioritize threads exiting the semaphore. This helps ensure forward

progress and reduces the serialization penalty resulting from multiple tries at acquiring the

lock variable by a group of TBs in which some are trying to exit while others enter the

semaphore. Figure 3.2 shows a high-level overview of the proposed design.

Listings 3.3 and 3.4 show, respectively, the post and wait components of the proposed

priority semaphore. The key difference between this code and the prior version shown in

Listing 2.5 and Listing 2.6 is that by adding a priority mechanism, and checking this mech-

anism in post before attempting to acquire the lock, threads leaving the critical section are

favored.
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1 acqLock = f a l s e ;

2 whi l e ( ! acqLock ) {

3 i f ( atomicCAS( lock , 0 , 1) == 0) {

4 // g l oba l scope s t o r e r e l e a s e

5 __threadfence ( ) ;

6 acqLock = true ;

7 } e l s e { atomicOr ( p r i o r i t y , 1) ; }

8 }

9 // wr i t e r s add the max value to the semaphore

10 i f ( i sWr i t e r ) { semSize += maxSemCount ; }

11 e l s e { ++semSize ; }

12 // g l oba l scope s t o r e r e l e a s e

13 __threadfence ( ) ;

14 atomicExch ( lock , 0) ;

15 atomicAnd ( p r i o r i t y , 0) ;

Listing 3.4 Pseudo-code for the core wait routine of the proposed GPU priority
semaphore. Wait exits the semaphore.
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Chapter Four

Methodology

4.1 System Setup

To study the performance impact of our proposed algorithmic optimizations from Section 3,

we run the baseline algorithms and the optimized version on three modern NVIDIA GPU

architectures – GTX 1080 [46], Titan V [40] and RTX 2080Ti [43]. These GPUs are repre-

sentative of the three most recent generations of GPUs. The system configurations are listed

in Table 4.1. We use CUDA 10 for all experiments [37].

GPU Feature GTX 1080 Titan V RTX 2080Ti

Architecture Pascal Volta Turing

# SMs 20 80 68

# CUDA Cores/SM 128 64 128

Max TBs/SM 32 32 16

GPU Base Clock 1480 MHz 1200 MHz 1350 MHz

L2 Cache Size 2816 KB 4608 KB 5632 KB

Memory 8 GB GDDR 16 GB HBM2 16 GB HBM2

Table 4.1 GPUs used to evaluate algorithms, with relevant system parameters.
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4.2 Benchmarks

We use barrier and semaphore microbenchmarks and benchmarks to evaluate our proposed

algorithms. The microbenchmarks allow us to quickly compare different synchronization

approaches and different critical section sizes. For the baseline microbenchmarks, we use

HeteroSync’s tree barrier and semaphores with and without exponential software backoff, as

described in Section 2. We also compare against CCG’s barrier synchronization. All of the

microbenchmarks perform a series of loads and stores to global memory locations. We also

compare the performance of each barrier for four modern GPGPU benchmarks [9, 24], which

are representative of larger GPU programs that use barriers. For BFS, SSSP, and PageRank,

we use the bgg.gr (1 TB/SM), USA-road-d.NY (2 TBs/SM), USA-road-d.FLA (4 TBs/SM),

USA-road-d.W (8 TBs/SM), and USA-road-dUSA-road-d.USA (16 TBs/SM) graphs from

LonestarGPU [9] to model various levels of contention. Table 4.2 and Table 4.3 lists the

synchronization primitive microbenchmarks and benchmarks used in the experiments.

4.3 Configurations

We conduct a series of experiments on the benchmarks in Table 4.2 and Table 4.3. For all

experiments, we run the benchmark 10 times and take the average result to ensure we are

seeing steady state behavior.

To ensure that each SM has the same number of TBs, we take advantage of NVIDIA’s

scheduler using a round robin arbitration scheme to schedule TBs across SMs [35, 49, 59].

To analyze the sensitivity of the algorithms under various loads, we vary the critical

section size and contention level in isolation. First, we hold the contention level constant

(by using 16 TBs/SM to model a high contention situation), and vary the critical section

size by varying the number of global loads and stores each thread performs from 10 through

1000 in multiples of 10. For the barrier implementations, these accesses use the barriers to
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Applications Description

Barriers

atomicTreeBarr [57] Two-level atomic tree barrier

atomicTreeBarrSRB Proposed two-level sense reversing tree barrier. ldst represents the num-

ber of load and store each thread performs.

Semaphores

SpinSem1 [57] Semaphore with size = 1

SpinSemEBO1 [57] Semaphore with exponential software backoff and semaphore size = 1

SpinSem10 [57] Semaphore with semaphore size = 10

SpinSemEBO10 [57] Semaphore with exponential software backoff and semaphore size = 10

SpinSem120 [57] Semaphore with semaphore size = 120

SpinSemEBO120 [57] Semaphore with exponential software backoff and semaphore size = 120

PriorSem1 Proposed semaphore with writer priority flag and semaphore size = 1

PriorSem10 Proposed semaphore with writer priority flag and semaphore size = 10

PriorSem120 Proposed semaphore with writer priority flag and semaphore size = 120

PriorSemEBO1 Proposed semaphore with writer priority flag, exponential software back-

off and semaphore size = 1

PriorSemEBO10 Proposed semaphore with writer priority flag, exponential software back-

off and semaphore size = 10

PriorSemEBO120 Proposed semaphore with writer priority flag, exponential software back-

off and semaphore size = 120

Table 4.2 Synchronization primitive microbenchmarks.

ensure that multiple threads are not accessing the same data simultaneously, while for the

semaphores these accesses are all performed in the critical section. Second, to see the effect

contention has on the algorithm’s performance, we hold the critical section size constant (at

10 global loads and stores) and vary the number of TBs from 1 TB/SM to 32 TBs/SM (for
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Applications Description

BFS [9] Graph traversal algorithm.

SSSP [9] Graph algorithm which computes the shortest path of each node from a

source node.

PageRank [9] Ranks websites from search engine results.

Reduce [24] Reduces array of elements into a single result.

Table 4.3 Synchronization primitive benchmarks.

Turing we vary from 1 TB/SM to 16 TB/SM; Turing allows a maximum of 16 TB/SM).

For these experiments, we use weak scaling [16]. We also show the kernel GPU activity

profiles provided by NVIDIA NVPROF [44] for both the baseline barrier/semaphore and

the proposed implementations. Additionally, we present a breakdown of the synchronization

and non-synchronization time for all implementations.

For the Semaphore, we compare execution times of the baseline implementation, proposed

implementation, baseline implementation with exponential backoff and proposed implemen-

tation with exponential backoff across different contention levels. These different contention

points are created by either varying the Semaphore size, number of TBs/SM, or number of

load and store instructions while keeping the other two constants. We use semaphore sizes

of 1, 10 and 120. These sizes are taken from HeteroSync and represent cases where the ratio

of readers to writers varies.

Finally, we compute the breakdown of the synchronization and non-synchronization time

for the microbenchmarks to understand the amount of time they spend on synchronization

to access the critical section. Our optimizations seek to reduce the synchronization time

by reducing the number of atomic transactions in the case of barriers, and the degree of

contention in accessing the critical section in the case of semaphores.
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Chapter Five

Evaluation

5.1 Barriers

This section compares and analyzes the performance of all three barriers with increase in

the number of TBs to vary the contention level and increase in the length of critical section

size.

5.1.1 Increase in contention level

Figure 5.4 compares the execution time of all three barriers, as the number of TBs vary.

Overall, these results show that the sense reversing barrier (SRB) and CCG significantly

outperform the baseline. On average, the SRB improves performance by 14% on the Pascal,

24% on the Volta, and 41% on the Turing GPU compared to the baseline atomicTreeBarrier.

By removing the second barrier call, SRB significantly reduces the number of atomic accesses

in the baseline by over 50%. Moreover, dynamically selecting a TB as the per SM leader

further improves performance, by avoiding stalls when the static leader is not active. SRB’s

gains over the baseline also get better as contention increases; although the baseline also uses

a tree barrier, the additional atomics it must perform relative to SRB cause execution time to

continue increasing faster than SRB’s does. This demonstrates how SRB’s changes improve

scalability. To further examine the differences between the baseline and SRB, Figure 5.5
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breaks down their execution time in terms of synchronization and non-synchronization time

for the Volta GPU. On average, SRB reduces the synchronization time by 78%, which in turn

reduces SRB’s overall execution time. Moreover, non-synchronization time only increases a

little for SRB as contention increases, demonstrating that the reduction in synchronization

time is not replaced by power-hungry active waiting – which would reduce synchronization

time without reducing execution time.

CCG also provides significant benefits over the baseline, showing similar trends to SRB

relative to the baseline. Notably, CCG outperforms SRB at lower levels of contention. This

makes sense, because at low levels of contention, SRB’s software backoff and hierarchical

design offer less benefit. But, as the level of contention increases, and more TBs are joining

CCG’s single-level global barrier, SRB approaches and then outperforms CCG for Volta

and Turing. However, for the Pascal GTX 1080, CCG always outperforms SRB for the

microbenchmark. We believe this sizable performance difference is the result of Pascal having

a much smaller number of SMs (Table 4.1), which reduces the number of TBs that need to be

scheduled to create similar levels of GPU occupancy (and contention) compared to the Volta

and Turing GPUs. Since the number of TBs is smaller for the same contention level, the

number of accesses to the shared variables also decreases, making CCG the best choice for the

microbenchmark on the Pascal GTX 1080. Nevertheless, since CCG and SRB significantly

outperform the baseline, we focus on the comparison between CCG and SRB in the full-sized

benchmarks that use barriers.

To further explore CCG and SRB’s behavior, Figure 5.9 examines their performance

as contention varies for four full-sized benchmarks that use barriers. Similar to the mi-

crobenchmarks, at lower contention levels CCG again outperforms SRB. However, unlike

the microbenchmarks, SRB consistently outperforms CCG at much lowers of contention

(e.g., 4 TBs/SM for Volta and Turing). This happens because SRB’s use of locally scoped

atomics reduces the number of global flushes and invalidations, which improves scalability

and performance relative to CCG, which must globally flush and invalidate more frequently
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due to its single-level design. This difference is further magnified since CCG does not per-

form backoff. Thus, as contention increases, SRB reduces unnecessary accesses to the shared

synchronization variables. In general, for all four benchmarks, SRB’s performance improve-

ment over CCG is closely tied to the percentage of total execution time spent in global

synchronization. For example, global synchronization is a major component in the Reduce

benchmark. Hence for Reduce SRB outperforms CCG by an average of 62% at the maximum

contention level, across the three GPU architectures. In contrast, in PageRank a smaller

percentage of the overall execution time is spent in synchronization. As a result, SRB only

improves performance by 4% on average over CCG. Finally, across all three GPUs, for BFS

and SSSP, CCG consistently outperforms SRB for lower contention levels (e.g., 11% and 17%

better for BFS and SSSP, respectively, on average at the lowest contention level). However,

as contention increases, SRB’s advantages again enable it to outperform CCG: at the max-

imum contention level SRB is 24% and 31% better than CCG on average across the three

GPUs, respectively, for BFS and SSSP.

5.1.2 Increase in critical section length

Given these above results, we also evaluate how all three barrier algorithms scale as the

size of the critical section varies from 10-1000 in Figure 5.13; these critical section sizes are

evaluated at 1 TB/SM, 16 TBs/SM, and 32 TBs/SM for Pascal and Volta, and 1 TB/SM,

8 TBs/SM, and 16 TBs/SM for Turing. These results confirm the results from the prior

two studies: as contention increases, SRB again starts to outperform CCG. Interestingly, as

critical section size increases, CCG and SRB provide smaller benefits over the baseline. This

occurs because an increasing amount of time in these applications is spent performing data

accesses.
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5.2 Semaphores

For the Semaphore, we compare execution times of the baseline implementation, proposed

implementation, baseline implementation with exponential backoff, and proposed implemen-

tation with exponential backoff across different contention levels and different critical section

lengths.

5.2.1 Increase in contention level

These different contention points are created by either varying the Semaphore size, number

of TBs/SM, or number of load and store instructions while keeping the other two constants.

Figures 5.17, 5.21, and 5.25 show the execution times of all the four implementations across

different contention levels ranging from 1 TB/SM to the maximum TB/SM across different

GPU architectures (Table 4.1). Across the data points available the proposed implementation

shows a 35% performance gain over the baseline implementation on the Pascal, 89% on the

Volta and 70% on the Turing GPU on average for semaphore of size 1. For the semaphores

with less contentions, that is, 10 and 120, the gains are slightly more modest. For example, for

size 10, the average performance gain is 29% for Pascal, 89% for Volta, and 66% for Turing.

The baseline implementation with exponential backoff shows much better performance and

is only 10% slower than the proposed solution on the Pascal and 5% slower on the Volta

GPU for a semaphore of size 1. However, data for the baseline could be gathered across

only a few data points due to the problem of livelock with increased contention for the

centralized semaphore variable. We were only able to get data for the contention case of

up to 4 TBs/SM on the Pascal GPU and 1 TB/SM on the Volta and Turing GPUs. The

baseline implementation which uses exponential backoff to reduce the number of accesses to

synchronization variables also livelocks at the same data points. In comparison, our proposed

implementation alleviates the problem of livelock in the baseline implementation across all

the data points considered. This demonstrates the value of the priority mechanism, which
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prevents TBs entering the semaphore from stopping TBs trying to exit the semaphore, thus

ensuring thus forward progress. The GPU kernel activity profile (Figures 5.30 and 5.31)

shows that our priority mechanism also reduces the redundant tries to acquire the lock

variable by TBs trying to enter the semaphore when there is already a writer TB inside the

semaphore thereby reducing the overall synchronization time from 12% in baseline to 5% in

the proposed implementation. Further, Figure 5.32 shows that the priority mechanism also

reduces the amount of time TBs spends on the critical section (called as synchronization

time) by 88% as compared to the baseline.

5.2.2 Increase in critical section length

Finally, as with the SRB, we evaluate the semaphores across different lengths of the criti-

cal sections and for different numbers of TBs/SM based on the GPU architecture. We see

a similar trend to the sense reversing barrier for performance gain (Figure 5.29): with in-

creasing critical sections size the overall gains decrease because the percentage of time spent

in synchronization decreases as we increase the size of the critical section. Overall, these

results show that SRB significantly improves on the baseline barrier and semaphore, and

outperforms the state-of-the-art CCG barrier as contention increases.

28



Figure 5.1 Pascal Architecture

Figure 5.2 Volta Architecture

Figure 5.3 Turing Architecture

Figure 5.4 Execution time for all sense reversing barriers, as contention increases.
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Figure 5.5 Comparison of sync and non-sync time for barriers in Volta GPU ar-
chitecture.
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Figure 5.6 Pascal Architecture

Figure 5.7 Volta Architecture

Figure 5.8 Turing Architecture

Figure 5.9 Execution time for benchmarks with barriers as contention varies.
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Figure 5.10 Pascal Architecture

Figure 5.11 Volta Architecture

Figure 5.12 Turing Architecture

Figure 5.13 Execution time for barrier microbenchmarks as critical section size
varies.
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Figure 5.14 Pascal Architecture

Figure 5.15 Volta Architecture

Figure 5.16 Turing Architecture

Figure 5.17 Execution time for all size 1 semaphores, as contention increases.
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Figure 5.18 Pascal Architecture

Figure 5.19 Volta Architecture

Figure 5.20 Turing Architecture

Figure 5.21 Execution time for all size 10 semaphores, as contention increases.
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Figure 5.22 Pascal Architecture

Figure 5.23 Volta Architecture

Figure 5.24 Turing Architecture

Figure 5.25 Execution time for all size 120 semaphores, as contention increases.
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Figure 5.26 Pascal Architecture

Figure 5.27 Volta Architecture

Figure 5.28 Turing Architecture

Figure 5.29 Execution time for semaphores as critical section size varies. The label
shows the name of the microbenchmarks suffixed with the critical section size.
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Figure 5.30 GPU kernel profile for the baseline semaphore.

Figure 5.31 GPU kernel profile for the priority semaphore.

Figure 5.32 Comparison of semaphore sync and non-sync time.
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Chapter Six

Related Work

CPU Synchronization Primitives: CPUs have a long history of developing efficient

synchronization primitives for fine-grained synchronization. This support include centralized

and decentralized mutexes [7, 32, 33, 47, 48, 54], ticket locks [19, 28], barriers [21, 63], and

semaphores [12]. Some of these approaches, like ours, even use backoff techniques to reduce

contention [7, 33]. However, GPU applications traditionally haven’t utilized fine-grained

synchronization. Moreover, the level of parallelism in GPUs necessitates simpler coherence

protocols and less OS involvement.

Currently, most modern CPU operating systems include highly optimized synchronization

primitives such as spin mutexes, barriers, and semaphores [13]. The simplest realization of

a mutex on a CPU is a simple spin lock implemented using atomic instructions [52, 53,

62]. However, spin mutex locks and other synchronization primitives do not scale well on a

GPU as the number of threads increases. This is because most CPU spin locks primitives

are implemented using linked data structures which causes warp divergence in GPUs [70].

Further, as the number of threads increases, these mutexes use excessive atomics which

degrades performance (Section 2.1). As a result, most of the CPU advancements in this

space have yet to be applied to GPUs. Regardless, as GPU applications become increasingly

general-purpose, the need for better synchronization techniques on GPUs has increased. Our

work make strides in this direction and improves over the current state-of-the-art for GPUs.
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GPU Synchronization Primitives: Although GPU synchronization support is still in its

infancy compared to CPUs, prior work has laid the groundwork we build upon in this work.

Prior work such as SyncPrims [61] developed micro-benchmarks consisting of synchronization

primitives for discrete GPUs. HeteroSync [57] extended SyncPrims to resolve this issue, and

created a single benchmark suite which implements various synchronization primitives, along

with variants for locally and globally scoped atomics [22], as well as relaxed atomics [55].

However, as shown in Section 5 the barrier and semaphore implementations in HeteroSync

do not scale well with the number of thread blocks and result in livelock. Our proposed

approaches address these shortcomings and create optimized barriers and semaphores which

both scale well as the number of thread block increases and also perform significantly lesser

atomics. HeteroSync also includes a decentralized, two-level lock-free barrier, which ex-

tends a prior decentralized, single-level lock-free barrier [71]. Decentralized barriers trade off

increased memory consumption for reduced contention, improved efficiency, and improved

scalability. However, unlike our approach, it does not focus on centralized barriers and

consumes significantly more memory.

Prior work also proposed a protocol that dynamically estimates a GPU kernel’s occu-

pancy for barriers [60]. Sorensen’s work modifies existing inter-TB barrier to use OpenCL

atomic operations and restricts the number of TBs based on the discovery protocol estimate.

Since the restricted number of occupant TBs guarantees fair scheduling, they can reliably

participate in an inter-TB barrier and ensure deadlock-freedom. Finally, GPU manufactures

such as AMD and NVIDIA have started to add support for both intra- and inter-block syn-

chronization. Recent AMD GPUs provide hardware support for synchronization as a part

of the Global Data Share [4]. However, this hardware support is limited in terms of scope

since only a fixed number of barriers can be run.
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Chapter Seven

Conclusion

Although GPUs have traditionally run applications with only coarse-grained synchroniza-

tion, in recent years an increasing number of workloads have started to utilize GPUs. Thus,

efficient support for fine-grained GPU synchronization via barriers and semaphores is increas-

ingly important. Recent work has made significant strides in both academia and industry.

However, we found that these algorithms, when used on modern GPUs with millions of

threads, often scale poorly or suffer from deadlock at high contention levels. To overcome

these issues, we propose improvements to these state-of-the-art GPU barrier and semaphore

synchronization primitives. Our results show that our algorithms significantly improve the

performance and scalability of GPU barriers and semaphores for NVIDIA Pascal, Volta, and

Turing GPUs and avoid deadlocks. In particular, the techniques proposed reduce global

memory traffic, especially the number of atomics, for barriers, and avoids extraneous con-

tention over entering and exiting the semaphore. This results in an average of 26% perfor-

mance improvement for the sense reversing barrier relative to the baseline atomic tree barrier;

the new semaphore implementation improves performance by 65% on average. Moreover, al-

though NVIDIA’s state-of-the-art CCG barrier outperforms our two-level SRB at low levels

of contention, as contention increases, our approach scales much better. For example, at the

highest level of contention, for four full-sized benchmarks our barrier outperforms CCG by

28% on Pascal, 41% on Volta, and 20% on Turing.
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